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Summary

Multi-sample U-statistics encompass a wide class of test statistics that allow the comparison of 

two or more distributions. U-statistics are especially powerful because they can be applied to both 

numeric and non-numeric data, e.g., ordinal and categorical data where a pairwise similarity or 

distance-like measure between categories is available. However, when comparing the distribution 

of a variable across two or more groups, observed differences may be due to confounding 

covariates. For example, in a case-control study, the distribution of exposure in cases may differ 

from that in controls entirely because of variables that are related to both exposure and case status 

and are distributed differently among case and control participants. We propose to use 

individually-reweighted data (i.e., using the stratification score for retrospective data or the 

propensity score for prospective data) to construct adjusted U-statistics that can test the equality of 

distributions across two (or more) groups in the presence of confounding covariates. Asymptotic 

normality of our adjusted U-statistics is established and a closed form expression of their 

asymptotic variance is presented. The utility of our approach is demonstrated through simulation 

studies, as well as in an analysis of data from a case-control study conducted among African-

Americans, comparing whether the similarity in haplotypes (i.e., sets of adjacent genetic loci 

inherited from the same parent) occurring in a case and a control participant differs from the 

similarity in haplotypes occurring in two control participants.

Keywords

Adjusted U-statistics; Propensity score; Multiple group comparison

*Correspondence: Somnath Datta, Ph.D., Department of Biostatistics, University of Florida, Gainesville, Florida, USA. 
somnath.datta@ufl.edu. 

DISCLAIMER
The conclusions, findings, and opinions expressed by the authors do not necessarily reflect the official position of the U.S. Department 
of Health and Human Services, the Public Health Service or the Centers for Disease Control and Prevention.

SOFTWARE AVAILABILITY
R-code for the computing the standardized test statistic is available as “SUPPORTING WEB MATERIAL” to this manuscript.

HHS Public Access
Author manuscript
Stat Med. Author manuscript; available in PMC 2019 October 15.

Published in final edited form as:
Stat Med. 2018 October 15; 37(23): 3357–3372. doi:10.1002/sim.7825.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 | INTRODUCTION

U-statistics1,2 are widely used to compare the distribution of a random variable of interest 

across two or more groups. An appealing feature of U-statistics is that they often rely only 

on symmetry. For example, given that the distributions of a variable across two or more 

groups are the same, if the data are pooled and then ranked, we would expect that the 

average rank of observations from each group should be the same; this forms the basis of the 

Wilcoxon rank sum test. U-statistics are very general, and can be used for non-numeric data, 

e.g., ordinal and categorical data where a pairwise similarity or distance-like measure 

between categories is available. For example, in Section 5 we analyze data from a case-

control study, comparing the extent to which the haplotypes (i.e., the alleles that were 

inherited from the same parent at sets of adjacent genetic loci) of case participants are 

different from the haplotypes of control participants. Haplotypes can be coded by strings of 

text, and one measure of the similarity between two haplotypes is the number of letters they 

share in common at the same location in the string. We show that tests of haplotype 

similarity can be easily constructed using U-statistics.

When group membership is randomly assigned, we are certain that any difference we 

observe between the groups must be due to differential treatment of the groups after 

randomization. For example, after randomization, one group may be given an active drug 

and another group a placebo. In this case, differences in medical outcome can be attributed 

to the effect of the drug. However, when group membership is not assigned through 

randomization, there may be confounding covariates that can cause a spurious association 

between outcome and group membership. Specifically, if there are covariates that influence 

both group membership and the outcome variable we are comparing, then an observed 

difference in the distribution of outcome variable across groups may be due to a difference 

in the distribution of these covariates across groups. For example, in a study that compares 

lung capacity among persons who consume alcohol and persons who abstain from alcohol, 

an observed difference may be due to the presence of more smokers among the persons who 

consume alcohol. In the haplotype example, the genetic ancestry of cases may differ 

systematically from controls. In the data from African-Americans we consider, the 

proportions of African or European ancestry will affect the distribution of haplotypes found 

in each group. If African-Americans have a different risk of disease than persons of purely 

European ancestry, then genetic ancestry is a confounder and must be accounted for in the 

analysis.3,4

The usual approach to account for confounding covariates is to model their effect on the 

outcome of interest using a regression approach. While this direct approach is very useful, it 

requires a test that can be formulated in a regression setting. Unfortunately, U-statistics are 

typically not related to regression procedures. As a result, direct adjustment is problematic. 

For example, it is unclear how the direct approach could be applied in the haplotype 

example, where the outcome (similarity or sharing) is only defined for pairs of haplotypes. A 

related approach is to regress the outcome on covariates and then form a U-statistic from the 

residuals of this regression. This approach is only valid for linear regression, and is limited 

to the situation where the outcome variable is numeric.
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Here we take an alternative approach based on the stratification score5,6 or the propensity 

score.7,8 We model the probability of group membership as a function of confounding 

covariates, typically using logistic regression for two groups or polyto-mous logistic 

regression for more than two groups. Then, we inversely weight the sample according to the 

probability of group membership.9 Under the null hypothesis of no group effect on the 

outcome, the weighted outcome distributions should be the same.5,10 We then construct 

adjusted U-statistic tests based on these weighted distributions. Since reweighted sample 

means and estimating equations based on propensity scores have been used in the context of 

causal inference, it can be anticipated that a similar approach may work for a U-statistic. 

Although the inverse weighting approach to account for confounding has been proposed 

over years, it has not been well established in the non-parametric field other than the work 

by Jiang et al.11,12 and Rosen-baum.13 Jiang et al.11,12 proposed a propensity-score adjusted 

generalization of Kendall’s Tau for estimating the association between genotype and trait in 

a single population; Rosenbaum13 proposed a new family of U-Statistics for comparing 

matched pairs. However, a formal treatment for a general kernel of such U-statistics does not 

seem to be available. We demonstrate, both theoretically and through simulations, that this 

approach works not only for propensity scores but also for stratification scores in 

retrospective studies. More importantly, we obtain a closed form of asymptotic variance 

estimator for our reweighted U-statistics, which is a novel and useful contribution of our 

current work. We also generalize our proposed U-Statistics to compare multiple groups. 

Because this variance estimator is somewhat complex, we have made an R-code available 

that implements our approach for two- and multi-sample tests.

The rest of the paper is organized as follows. In section 2 we consider stratification-score-

based (or propensity-score-based) weighting as a way of adjusting a distribution for 

confounders, in essence by standardization. In section 3 we consider adjusted two-sample U-

statistics including generalizations that compare multiple groups by systematic pairwise 

comparisons, generalizing both the Kruskal-Wallis test for general alternatives and the 

Jonckheere-Terpstra test for ordered alternatives. In section 4 we investigate the statistical 

properties of our adjusted U-statistics using simulated data, focusing on the Rank-Sum test. 

In section 5 we apply our adjusted U-statistics to genetic data to test the association between 

haplotypes in the catechol-O-methyltransferase (COMT) gene and schizophrenia among 

African-Americans. We discuss our results in section 6. Technical details can be found in the 

appendices.

2 | SCORE-BASED ADJUSTMENT FOR CONFOUNDING AND ADJUSTED 

U-STATISTICS

To develop adjusted U-statistics that account for confounding covariates, we adopt a 

marginal approach that standardizes the data by weighting observations so that the 

distribution of confounding covariates is the same in each group.5,15 Assume that the ith 

observation is a member of group gi, and let Yi denote the outcome variables with 

realization yi. We let ng denote the total number of observations from group g, 1 ≤ g ≤ 𝒢, 

and n denote the total number of observations in the entire sample, n = n1 + ⋯ + n𝒢. In the 

simplest case there are only two groups and we wish to test the null hypothesis that Y from 
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group 1 has the same distribution as Y from group 2, against an alternative hypothesis that 

the distributions of Y differ by group. In a more general setting, assume 𝒢 groups and let ℐ
and 𝒜 denote two non-intersecting sets of groups. Then, we may wish to test whether the 

values of Y from observations having gi ∈ ℐ have a different distribution from values of Y 

from observations having gi ∈ 𝒜. As a concrete example, we may wish to test whether the 

distribution of Y values from group 1 is different from the distribution of Y values in all the 

other groups. In the absence of confounding covariates, we would expect that hypotheses 

like these could be tested using the a two-sample U-statistic of order (B, D) having the form

U = 1
m1
B

m2
D

∑
i ∈ 𝒮B(ℐ)

∑
j ∈ 𝒮D(𝒜)

K yi1
, ⋯, yiB

; y j1
, ⋯, y jD

(1)

where i = (i1,i2,⋯, iB), j = (j1,j2,⋯, jD), 𝒮B(ℐ) = i i1 < i2 < ⋯ < iB, gib
∈ ℐ for b = 1, ⋯, B , 

and 𝒮D(𝒜) = j j1 < j2 < ⋯ < jD, g jd
∈ 𝒜 for d = 1, ⋯, D , m1 is the number of observations 

having gi ∈ ℐ, m2 is the number of observations having gi ∈ 𝒜 and K(·, ·) is the kernel of the 

U-statistic. We assume without loss of generality that K is symmetric upon interchange of 

the first B and second D arguments. We let ω denote the expected value of U under the null 

hypothesis that the distribution of values of Y is the same whether gi ∈ ℐ or 𝒜. We assume 

that the centering of K under the null hypothesis is known and does not depend on the 

common distribution of Y. For example, if we use the Wilcoxon kernel 

K y1, y2 = 1
2 I y1 < y2 + 1

2 I y1 ≤ y2  we know that ω = 1
2  because the chance that Y1 < Y2 is 

1
2  (ignoring ties) as long as Y1 has the same distribution as Y2. In the presence of 

confounding covariates Z if we calculated U among persons having the same values of Z, we 

would still find that the expected value of U was 1
2  when the null hypothesis is true. 

However, when we ignore confounding covariates Z when calculating U, we may find that 

the expected value of (1) differs from 1
2  even under the null hypothesis. For this reason, we 

seek a version of (1) that will account for the effect of confounding covariates without 

requiring that we calculate U separately for each set of covariate values Z.

To develop such a test, consider comparing the CDF of Y between two or more groups in the 

presence of confounding covariates Z. We wish to test the null hypothesis that pr[Y ≤ y|G = 
g, Z = z] = pr[Y ≤ y|Z = z] or equivalently, pr[G = g|Y = y,Z = z] = pr[G = g|Z = z], where 

we have implicitly assumed there are no unmeasured confounding covariates. Note that 

under this null hypothesis we may find that pr[Y ≤ y|G = g] ≠ pr[Y ≤ y] since pr[Z = z|G = 
g] ≠ pr[Z = z]. Thus, it is necessary to properly account for confounding covariates Z when 

we construct our U-statistics.
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Allowing Z to include interactions or powers of measured covariates, a fairly general model 

is to assume that under the null hypothesis, covariates Z influence group membership 

according to the multivariate logistic regression model

log pr[G = g Z = z]
pr[G = 1 Z = z] = γg

T ⋅ z,  for g = 2, ⋯, 𝒢, (2)

where we assume that the first component of Z is an intercept, and where we note that the 

choice of reference group in (2) is arbitrary. We assume that model (2) correctly specifies the 

relationship between group membership and the covariates, and that the usual regularity 

conditions (see, e.g., Fahrmeir and Kaufmann14) for consistency and asymptotic normality 

of the maximum likelihood estimator of γ are satisfied. It should be noticed that the results 

of inverse weighting approach may not be valid if the stratification and/or propensity scores 

models in equation (2) are mis-specified. For later use, we note that γ = γ2, γ3, ⋯, γG ′ is 

obtained by solving the estimating equation

∑
i = 1

n
Si(γ) = 0 (3)

where Si (γ) is the score function from the ith individual under model (2) and the 

multinomial distribution assumption for group membership. The estimate for γ in the 

estimating equation (3) is obtained by the Fisher-scoring iterative method which is 

implemented using the R-package VGAM.18 Once γ  is obtained, we define Si ≡ Si(γ ) and 

J = ∑i = 1
n ∂Si

∂γ |γ = γ .

Assume that we fit model (2) using data on G and Z only to obtain γ  and thereby obtain 

pr [G = g |Z = z; γ ]. For retrospective data, G corresponds to disease status and 

pr [G = g |Z = z; γ ] is the stratification score [5, 11], here generalized to multiple disease 

categories. For prospective data, G corresponds to an exposure and pr [G = g |Z = z; γ ] is the 

propensity score [6] as generalized to multiple exposure groups by Imbens [7].

Returning to the problem of estimating the distribution of Y, for either retrospective or 

prospective data, we can estimate a weighted CDF of Y in group g by

1
n ∑

i = 1

n
w zi, gi; γ I yi ≤ y, gi = g , (4)

where the weights in (4) are chosen to standardize the data in each group to the same 

distribution of Z. We consider here two choices for the weight w(zi, gi; γ), namely
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w zi, gi; γ = 1
pr G = gi |Z = zi; γ

(5)

and

w zi, gi; γ =
pr G = 1 Z = zi; γ
pr G = gi |Z = zi; γ

. (6)

Choosing (5) corresponds to standardizing data from each group g to the marginal 

distribution of Z found in the study population, while choosing (6) corresponds to 

standardizing data from each group to the distribution of Z found in group 1,5 thus data in 

group 1 are not reweighted in equation (6). Note that choice of labels for the groups is 

arbitrary, so (6) can be used to standardize to the distribution of Z found in any of the 

groups.

Although (4) is normalized in expected value, it may fail to be normalized in practice. 

Hence, we may prefer to estimate the standardized CDF of Y in group g by

Σi = 1
n w zi, gi; γ I yi ≤ y, gi = g

Σi = 1
n w zi, gi; γ I gi = g

.

Finally, under the null hypothesis that the distribution of Y is the same for all groups in ℐ, 

we can estimate the standardized CDF of Y for those groups in ℐ by

1
m1

∑
i = 1

n w zi, gi; γ

W1(γ )
I yi ≤ y, gi ∈ ℐ ,

where m1 is the number of observations for which gi ∈ ℐ and

W1(γ ) = 1
m1

∑
i = 1

n
w zi, gi; γ I gi ∈ ℐ .

Similarly, we can estimate the standardized CDF of Y for groups in 𝒜 by

1
m2

∑
i = 1

n w zi, gi; γ

W2(γ )
I yi ≤ y, gi ∈ 𝒜 .

where m2 is the number of observations for which gi ∈ 𝒜 and
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W2(γ ) = 1
m2

∑
i = 1

n
w zi, gi; γ I gi ∈ 𝒜 .

Motivated by the standardized (weighted) CDF estimators just described, we propose the 

following two-sample adjusted U-statistic to account for confounding covariates,

Ua = 1
m1
B

1
m2
D

∑
i ∈ SB(ℐ)

∑
j ∈ SD(𝒜)

∏
b = 1

B
w1 zib

, gib
; γ

× K yi1
, …, yiB

; y j1
, …, y jD

∏
d = 1

D
w2 z jd

, g jd
; γ ,

(7)

where

wk zi, gi; γ =
w zi, gi; γ

Wk(γ)

for k = 1, 2. In writing (7) we have implicitly assumed the data are iid so that the weights 

assigned to sets of observations are the product of the weights for each observation.

Comparing (7) with (1), we see that (7) differs from a standard U-statistic in two ways. First, 

the normalizations Wk(γ ) are functions of all the data; second, γ  in w zi, gi; γ  (i = 1, …,n) is 

also a function of the data. However, Ua is closely related to the standard U-statistic having 

the following adjusted kernel

∏
b = 1

B
w zib

, gib
; γ K yi1

, …, yiB
; y j1

, …, y jD
∏

d = 1

D
w z jd

, g jd
; γ .

We assume that the second moment of this adjusted kernel is finite. We show in the appendix 

that it is possible to develop a linear approximation of Ua using the projection approach. In 

particular, we show that Ua has an asymptotically normal distribution, and that the 

asymptotic variance of Ua is consistently estimated by v given by

v = ∑
g ∈ ℐ ∪ 𝒜

ngσg
2 (8)

where ng is the number of observations having gi = g and
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σg
2 = 1

ng − 1 ∑
i gi = g

ξi − ξg
2, (9)

and

ξg = 1
ng

∑
i gi = g

ξi .

Here ξi = ξ1(i)I gi ∈ ℐ + ξ2(i)I gi ∈ 𝒜  with

ξ1(i) = m1
−1 −B μ  w1 zi, gi; γ − 1 + B  h1(i) − μ + n−1CnJ−1Si zi, gi; γ (10a)

ξ2( j) = m2
−1 −D μ  w2 z j, g j; γ − 1 + D  h2( j) − μ + n−1CnJ−1S j z j, g j; γ . (10b)

In the above equations, μ is estimated by equation (7), and h1(i), h2( j), and Cn are defined in 

equations (A7–A9) in Appendix A1; S i and J  were defined right after equations (3). 

Hypotheses about the distribution of Y can then be tested using the test statistic

Za =
Ua − ω

v
,

which has an asymptotic Normal distribution with mean zero and unit variance. We provide 

the asymptotic linear representation in Appendix A1 and show in the Appendix A2 that Ua − 

ω constructed using a case-control sample indeed has zero asymptotic mean under the null 

hypothesis of equal distributions in two groups adjusted for covariates.

3 | COMPARING MORE THAN TWO GROUPS

To account for comparisons involving more than two groups, we consider a vector of two-

sample U-statistics 𝒰a = Ua
(1), …, Ua

(R) , each component of which has the form (7) and tests 

the hypothesis that the distribution of Y for observations having g ∈ ℐr is the same as the 

distribution of Y for observations having g ∈ 𝒜r for 1 ≤ r ≤ R. This approach allows us to 

account for comparisons involving more than two groups without having to construct multi-

sample U-statistics, and leads to generalizations of popular tests such as the Kruskal-Wallis 

and Jonckheere-Terpstra tests to account for confounding covariates. The rth component of 

𝒰a thus has the form
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Ua
(r) = 1

m1
(r)

B

1
m2

(r)

D

∑
i ∈ SB(ℐr)

∑
j ∈ SD(𝒜r)

∏
b = 1

B
w1

(r) zib
, gib

; γ

× K yi1
, …, yiB

; y j1
, …, y jD

∏
d = 1

D
w2

(r) z jd
, g jd

; γ

where

w1
(r) zi, gi; γ =

w zi, gi; γ

m1
(r) −1 Σi:gi ∈ ℐr

w zi, gi; γ

and

w2
(r) z j, g j; γ =

w z j, g j; γ

m2
(r) −1 Σ j:g j ∈ 𝒜r

w z j, g j; γ
.

Because each component Ua
(r) has the same form as (7), the projection results derived for the 

two-group situation apply directly. Thus, the sample variance-covariance matrix of 𝒰a can 

be consistently estimated by

V = ∑
g ∈ ℐ ∪ 𝒜

ng Σg

where Σg is the variance-covariance matrix of ξi (now a vector) calculated among those 

observations having gi = g. To generalize the Kruskal-Wallis test, we choose ℐr = r  and 

𝒜r = j | j ≠ r  for 1 ≤ r ≤ 𝒢. General hypotheses about the distribution of Y can then be 

tested using the test statistic

Ta = 𝒰a − ω1 ′V− 𝒰a − ω1 ,

where V− denotes the generalized inverse of V and 1 is a vector with all components equal to 

1. Asymptotically, Ta has a χ2 distribution with degrees of freedom given by the rank of the 

matrix V.

If the alternative hypothesis is that groups are ordered in their response, then we choose 

ℐr = j | j < r  and 𝒜r = j | j ≥ r  for 2 ≤ r ≤ 𝒢. With this choice, we expect each component 

of 𝒰a − ω1 to be positive under the alternative hypothesis, so we can base testing on 
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D′ 𝒰a − ω1  which is normally distributed with variance D′ V D, and where D is a R-

dimensional vector that specifies the choice of test statistic. To generalize the Jonckheere-

Terpstra test17 we choose D = 1 to compute

Za =
1′ 𝒰a − ω1

1′V1
.

Asymptotically, Za has a standard normal distribution. If the direction of the ordering is 

known a priori, a one-sided p-value may be used.

4 | SIMULATION RESULTS

To demonstrate the general properties of our test, we used data on three groups simulated 

using the model (2) with Z = (Z1, Z2, Z3, Z4), where Z1 is the intercept, Z2 ~ N(0, 1), 

Z3 uni f orm − 1
2 , 1

2 , and Z4  Binomial  1, 1
2 − 1

2 . We used γ2 = (−2, 0.15, 0.2, 0.1) and γ3 = 

(−2.5, 0.3, 0.4, 0.2). We chose Y N 2
11 1T ⋅ Z − 1, 1  to ensure substantial confounding. Note 

that there is no association between Y and G in the presence of Z, so that the p-values of the 

test should be uniformly distributed. For all results shown here, we used the Wilcoxon kernel 

K(x, y) = 1
2 I[x < y] + 1

2 I[x ≤ y] for which ω = 1
2 .

To confirm the asymptotic normality of our adjusted U-statistics, we generated 1,000 data 

prospectively from model (2) with three groups, using the first 334 observations to fall into 

group 1, the next 333 observations to fall into group 2, and the last 333 observations to fall 

into group 3 as our data. The results are shown in Figure 1 Panel A for our generalization of 

the Kruskal-Wallis test and in Panel B for our generalization of the Jonckheere-Terpstra test. 

There is good agreement between the empirical and theoretical (uniform) p-values for the 

two adjusted tests, while the naive tests consistently have smaller p-values than are expected 

under the null. This is consistent with the notion that, absent adjustment for the confounder 

Z, there is an actual difference between the distribution of Y in the two groups. We show the 

empirical size for our simulations in Table 1. Drake19 investigated the effects of 

misspecification of the propensity score on estimators of treatment effect, and conclude that 

the bias of the estimator of the treatment effect is large if the covariates are omitted. The 

naive approach (i.e., the unadjusted U-Statistics) can be considered as a special case of the 

propensity score models with all covariates omitted. The results presented in Table 1 are 

coincident with those from Drake,19 indicating that the naive approach has a large bias for 

assessing the treatment effect.

Next, to investigate power, we considered simulating from the model

log pr[G = g |Z = z, Y = y]
 pr [G = 1|Z = z, Y = y] = γg

T ⋅ z + βgy,  g = 2, 3 (11)
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for values (β2, β3) = α(0.025, 0.5), where α varies from 0 to 1. Note that under model (11) 

there is a true association between Y and G even after controlling for Z so long as α ≠ 0. We 

compared the power of our approach to detect this association with a Wald test of (β2, β3) = 

(0,0) calculated using the R package VGAM.18 The results are given in Figure 2 Panel A. To 

compare with the Jonckheere-Terpstra test, we considered a Wald test of the hypothesis (β2, 

β3) = (0,0) for the same model as specified in equation (11). The results, given in Figure 2 

Panel B, indicate that standardization to the study population outperforms standardization to 

group 1. The parametric model (11) outperforms the adjusted U-statistic, as to be expected. 

The efficiency loss when comparing to the parametric test could be large. Recall that this 

setting assumes that the parametric model is exactly correctly specified; we anticipate that 

the non-parametric approach will be more adventageous when the model for the group 

membership is misspecified.

To examine the power of the Wald test and U-statistics based test when the regression model 

is mis-specified, we carried out the exactly same simulations as above except that the 

simulated data were generated from the following model:

log pr[G = g |Z = z, Y = y]
pr[G = 1|Z = z, Y = y] = γg

T ⋅ z + βgy

1
3,  g = 2, 3.

As before, the Wald test is based on the regression model specified in (11). The power of the 

generalized Kruskal-Wallis U-statistics and Wald-test for different α are shown in Figure 2 

Panel C, and the power of the generalized Jonckheere-Terpstra U-statistics and Wald-test for 

different α are shown in Figure 2 Panel D. In both Panels C and D, the adjusted U-statistic 

test when standardized to the study population performs better than when standardized to 

group 1; furthermore, it also outperforms the Wald test, albeit slightly. In addition, we 

carried out simulation study with group membership specified by a probit model, the results 

showed that the estimator still constitutes an improvement over the naive approach.

5 | COMT HAPLOTYPES AND THE RISK OF SCHIZOPHRENIA IN AFRICAN 

AMERICANS

To illustrate the wide variety of analyses that can be done with the adjusted U-statistics we 

describe here, we analyze data on the association between genetic haplotypes and the risk of 

schizophrenia in African Americans. Haplotypes (i.e., the adjacent alleles that were 

contributed by the same parent, e.g. the adjacent paternally-derived alleles) in the catechol-

O-methyltransferase (COMT) gene have been associated with Schizophrenia in an 

Ashkenazi population,20 and deletions of the region containing COMT cause 

velocardiofacial syndrome, a syndrome that is associated with a high rate of schizophrenia.
21 Here we test the hypothesis that haplotypes of COMT are associated with schizophrenia 

using data from the GAIN network study of Schizophrenia, a genome-wide association 

study with data from 885 African-American case participants and 830 African-American 

control participants.
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Because genotypes, not haplotypes, are observed, it is necessary to exercise some care when 

making inference about haplotypes. Here we avoid these issues by comparing the similarity 

between the haplotypes of a case and a control participant to the similarity of haplotypes 

between two control participants. While it would seem that the unobserved haplotypes are 

required to measure this similarity, Tzeng et al.22 showed that the “counting measure” which 

compares the number of alleles that the haplotypes in one person share in common with the 

haplotypes of another person, can be calculated using genotype data alone. The similarity Δij 

between the ith and jth individual is then measured by counting the number of alleles the 

two individuals have in common at each locus, and then summing over the entire region. We 

consider here the U-statistic of order (1, 2) defined by the kernel

K i; j, j′ = 1
2 I Δi j > Δ j j′ + 1

2 I Δi j ≥ Δ j j′ + 1
2 I Δi j′ > Δ j j′ + 1

2 I Δi j′ ≥ Δ j j′

(12)

which compares whether the similarity between the haplotypes of a case and a control 

participant differs in similarity from the haplotypes of two control participants. For this 

kernel, we have ω = 1 by symmetry.

For this analysis, we define the region of interest when calculating similarity to be the 15 

SNPs that are genotyped in these data and lie between rs737865 and rs165599 inclusive (the 

region identified by Shifman et al.22). Our null hypothesis is that the distribution of 

haplotypes among case participants is the same as that among control participants; the 

alternative is that case participants have a different haplotype distribution, implying that 

COMT haplotypes are risk factors for schizophrenia.

Unlike the Ashkenazi population, African-Americans are genetically heterogeneous, and 

individuals vary in their proportion of African and European ancestry. Ancestry is a 

confounder because it affects both haplotype frequencies and the risk of disease. While 

ancestry is typically unmeasured, it is well established3,4 that principal components of 

genotype data can be used to control for confounding by ancestry. The details of the 

calculation of these confounding covariates in the GAIN schizophrenia study is described in 

Allen and Satten,5 who concluded that 3 principal components were sufficient to control for 

confounding by population stratification. Thus, we adjust for ancestry using principal 

components as confounding covariates when calculating the U-statistic just described.

To confirm the performance of our method with the higher-order kernel (12), we conducted 

a small simulation study. We first confirmed that our approach gave the proper size by 

generating datasets by sampling with replacement from the GAIN data, and assigning 

disease status according to the model (11) with Z corresponding to an intercept plus the 3 

principal components. When resampling we used γg = γg, the MLE of γg, and βg = 0. In this 

scheme, the association between Z and group membership found in the original data is 

preserved in each replicate dataset, but group membership is unrelated to genotype at the 15 
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loci we are considering. We used rejection sampling to generate 1,000 datasets each having 

100 case and 100 control participants. We found that the empirical size was 5.5% for tests 

having a nominal size of 5%, indicating good performance of our asymptotics for this 

sample size (Table 2). The q-q plot of the p-values is also very close to linear (Figure 3).

To ensure that the kernel (12) can discriminate between cases and controls when they truly 

differ in their genetic similarity, we first decomposed the matrix of similarities using 

multidimensional scaling with one dimension. We then used the resulting variable u (scaled 

to have unit variance) as a predictor of case status in model (11), with Y replaced by u. As 

βg increases, cases will be more likely to have larger values of u (and hence be increasingly 

similar to each other), controls will be more likely to have smaller values of u (and hence be 

increasingly similar to each other) while cases and controls will be increasingly dissimilar. 

The estimated power of our adjusted U-statistic for datasets having 100 case and 100 control 

participants using the kernel (12) with βg = 0.5, 1.0 and 1.5 is presented in Table 2. 

Estimates of power were based on 500 simulated datasets for each value of βg. It is clear that 

when cases and controls differ in their allele-sharing characteristics, the U-statistic based on 

kernel (12) can detect these differences.

Using the GAIN data, we tested the association of COMT haplotypes and case status using 

the kernel described above. Standardizing to the study population, we obtained a test statistic 

of 0.996, corresponding to a p-value of 0.318. These results suggest that COMT haplotypes 

are not associated with Schizophrenia in the GAIN study.

6 | DISCUSSION

U-statistics are a powerful tool for statistical analysis for a variety of data types. However, 

the standard U-statistic that compare samples from two or more populations do not allow for 

differences in confounding covariates in these populations. Using stratification- or 

propensity-score based weights, we have introduced adjusted U-statistics that adjust for 

confounding covariates. Using simulated data, we have shown that our adjusted U-statistics 

have appropriate size when the only association is spurious (due to confounding covariables) 

and maintain good efficiency against a properly-specified parametric model when a true 

association is present. We have also developed a closed form variance estimate for the 

adjusted U-statistics and provided an R-code for implementing our procedure. Finally, we 

have demonstrated the use of our adjusted U-statistics using genotype data, testing for 

genetic association between haplotypes in the COMT gene and schizophrenia in an African-

American population in which adjustment for confounding by the proportion of African and 

European ancestry is required for valid inference.

Although a few studies on adjusted U-Statistics have been appeared in the literature.11,12,13, 

there are some fundamental differences between our approach and their methods in terms of 

the context, scope, and the basic approaches. Jiang et al.11,12 deal only with the question of 

estimating the association between genotype and trait in a single population; their starting 

point is a one-sample U statistic that has the special form of a product of a kernel involving 

only trait information and a kernel involving only genotype information. Because the 

genotype kernel is linear in genotype G, they can replace G by G/E(G|Z) to give a test that 
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has mean zero in the presence of confounding covariates Z. However, this trick only works 

when the kernel is linear in the genotype. In general, if a kernel that is a function of G is not 

linear in G, it is not possible to replace G by G/E(G|Z = z) (or by G/P (G|Z) for that matter) 

and get a statistic that is properly centered in the presence of confounding. Finally, because 

Jiang et al.11,12 consider only testing a correlation between two variables in a single 

population, their approach does not generalize to popular two- or multi-sample U-statistics 

such as the Wilcoxon test we considered here. Rosenbaum13 proposes a rank-based U-

Statistics for matched pairs, where a set of one-sample quantities (the differences between 

the case value and control value for each matched set) are used. Thus, in effect, it is a one 

sample problem. It may be possible to use a permutation approach with our test for small 

sample in certain situations (e.g., when the confounding model is correctly specified). One 

needs to ensure that the amount of confounding in each permuted dataset remains the same. 

Further, the weighting model would have to be re-fit for each permutation (see, e.g., Epstein 

et al.23).

APPENDIX A1:: ASYMPTOTIC LINEAR REPRESENTATION OF UA.

We derive here an iid representation of Ua that facilitates calculation of its asymptotic 

distribution. We use simplified notations whenever possible: 

i = i1, …, iB , i1 < i2 < ⋯ < iB ∈ ℐ, w1(i; γ) = ∏b = 1
B w zib

, gib
; γ , K(i, j)

= K yi1
, …, yiB

; y j1
, …, y jD

, 

w2( j; γ) = ∏d = 1
D w z jd

, g jb
; γ , and c(m) = 1

m1
B

1
m2
D

. Also let μ* = c(m)E[∑w1(i, γ)K(i, j)w2(j, 

γ)] and μ = μ*/[μ1,W]B[μ2,W]D, where 

μ1, W = plim m1
−1∑i:gi ∈ ℐw zi, gi; γ , μ2, W = plim m2

−1∑ j:g j ∈ 𝒜w z j, g j; γ . For any random 

variable W, Wc denotes its mean corrected version W − E(W). Equalities up to op(n−1/2) 

terms will be denoted by ≈, where n = m1+ m2.

Suppose the group membership is related to covariate by the logistic regression model (2) 

and that the usual regularity conditions (see, e.g., Fahrmeir and Kaufmann14) for consistency 

and asymptotic normality of the maximum likelihood estimator of γ are satisfied. Also 

assume E [w1(i, γ)K(i, j)w2(j, γ)]2 < ∞.

By using a first-order Taylor series expansion, write
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Ua − μ =
c(m)∑i, j w1(i, γ)K(i, j)w2( j, γ )

m1
−1∑i:gi ∈ ℐw zi, gi; γ

B
m2

−1∑ j:g j ∈ 𝒜w z j, g j; γ
D − μ*

μ1, W
B μ2, W

D

≈ 𝓁1 m1
−1 ∑

i:gi ∈ ℐ
w zi, gi; γ − μ1, W + 𝓁2 m2

−1 ∑
j:g j ∈ 𝒜

w z j, g j; γ − μ2, W

+𝓁3 c(m)∑
i, j

w1(i, γ )K(i, j)w2( j, γ ) − μ* ,

(A1)

where

𝓁1 = −Bμ*
μ1, W

B + 1 μ2, W
D = −Bμ

μ1, W
,

𝓁2 = −Dμ*
μ1, W

B μ2, W
D + 1 = −Dμ

μ2, W
,

𝓁3 = 1
μ1, W

B μ2, W
D .

Next, note that

m1
−1 ∑

i:gi ∈ ℐ
w zi, gi; γ − μ1, W

= m1
−1 ∑

i:gi ∈ ℐ
w zi, gi; γ − m1

−1 ∑
i:gi ∈ ℐ

w zi, gi; γ + m1
−1 ∑

i:gi ∈ ℐ
w zi, gi; γ − μ1, W

≈ 𝓁4(γ − γ) + m1
−1 ∑

i:gi ∈ ℐ
w zi, gi; γ − μ1, W ,

(A2)

and likewise

m2
−1 ∑

j:g j ∈ 𝒜
w z j, g j; γ − μ2, W

= m2
−1 ∑

j:g j ∈ 𝒜
w z j, g j; γ − m2

−1 ∑
j:g j ∈ 𝒜

w z j, g j; γ + m2
−1 ∑

j:g j ∈ 𝒜
w z j, g j; γ − μ2, W

≈ 𝓁5(γ − γ) + m2
−1 ∑

j:g j ∈ 𝒜
w zi, gi; γ − μ2, W ,

(A3)

where
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𝓁4 = plim m1
−1 ∑

i:gi ∈ ℐ

∂w zi, gi; γ
∂γ  and 𝓁5 = plim m2

−1 ∑
j:g j ∈ 𝒜

∂w z j, g j; γ
∂γ .

Also using a similar triangulation we get

c(m)∑
i, j

w1(i, γ )K(i, j)w2( j, γ ) − μ*

= c(m)∑
i, j

w1(i, ⋅ )K(i, j)w2( j, ⋅ ) γ
γ + c(m)∑

i, j
w1(i, γ)K(i, j)w2( j, γ) − μ*

≈ 𝓁6(γ − γ) + B
m1

∑
i:gi ∈ ℐ

h1(i) − μ* + D
m2

∑
j:g j ∈ 𝒜

h2( j) − μ* ,

(A4)

by the first order Taylor series expansion and the standard projection argument applied to the 

generalized U-statistic with kernel

h(i, j) = w1(i, γ)K(i, j)w2( j, γ),

where h1(i) = E h(i, j) Y i1
= | yi), h2( j) = E h(i, j) Y j1

= y j), and

𝓁6 = plim c(m)∑
i, j

∂ w1(i, γ)K(i, j)w2( j, γ)
∂γ .

Assume that γ  is estimated by solving the (unbiased) estimating equation

S(z, g; γ ) = ∑
i = 1

n
Si zi, gi; γ = 0.

Then,

γ − γ ≈ − J−1n−1 ∑
i = 1

n
Si zi, gi; γ , (A5)

where

J = plim n−1 ∑
i = 1

n ∂Si zi, gi; γ
∂γ .

Finally, combining (A1)-(A5), we obtain the desired asymptotically linear representation in 

terms of mean zero independent summands:
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Ua − μ ≈ 𝓁1m1
−1 ∑

i:gi ∈ ℐ
w zi, gi; γ − μ1, W + 𝓁2m2

−1 ∑
j:g j ∈ 𝒜

w zi, gi; γ − μ2, W

+ B𝓁3m1
−1 ∑

i:gi ∈ ℐ
h1(i) − μ* + D𝓁4m2

−1 ∑
j:g j ∈ 𝒜

h2( j) − μ*

− 𝓁1𝓁4 + 𝓁2𝓁5 + 𝓁3𝓁6 J−1n−1 ∑
i = 1

n
Si zi, gi; γ

= − B μ m1
−1 ∑

i:gi ∈ ℐ
w1 zi, gi; γ − 1 − D μ m2

−1 ∑
j:g j ∈ 𝒜

w2 z j, g j; γ − 1

+ B m1
−1 ∑

i:gi ∈ ℐ
h1(i) − μ + D m2

−1 ∑
j:g j ∈ 𝒜

h2( j) − μ

+ CnJ−1 m1/n m1
−1 ∑

i:gi ∈ ℐ
Si zi, gi; γ + CnJ−1 m2/n m2

−1 ∑
j:g j ∈ 𝒜

S j z j, g j; γ

= ∑
i = 1

n
ξ1(i)I gi ∈ ℐ + ξ2(i)I gi ∈ 𝒜 = ∑

i = 1

n
ξi,

(A6)

where Cn = −(ℓ1ℓ4 + ℓ2ℓ5 + ℓ3ℓ6). Hence Ua follows an asymptotically normal distribution with 

mean μ and the estimated variance given by (8)–(10) with

ξ1(i) = m1
−1 −B μ w1(zi, gi; γ − 1 + B h1(i) − μ + CnJ−1(1/n)Si zi, gi; γ

ξ2( j) = m2
−1 −D μ w2 z j, g j; γ − 1 + D h2( j) − μ + CnJ−1(1/n)S j z j, g j; γ .

Here

h1(i) =
 w1 zi, gi; γ
m1 − 1
B − 1

m2
D

∑
i2, …, iB gib

∈ ℐ

∑
j1, …, jD g jd

∈ 𝒜

∏
b = 2

B
w1 zib

, gib
; γ

K yi, yi2
, …, yiB

; y j1
, …, y jD

∏
d = 1

D
w2 z jd

, g jd
; γ ,

(A7)

when i ∈ ℐ and h1(i) = 0 otherwise; and
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h2( j) =
w2 z j, g j; γ
m1
B

m2 − 1
D − 1

∑
i1, …, iB gib

∈ ℐ

∑
j2, …, jD g j

d
∈ 𝒜

∏
b = 1

B
w1 zib

, gib
; γ

K yi1
, yi2

, …, yiB
; y j, y j2

, …, y jD
∏

d = 2

D
w2 z jd

, g jd
; γ ,

(A8)

and

Cn ≡ − 𝓁1𝓁4 + 𝓁2𝓁5 + 𝓁3𝓁6

= Bμ
m1

∑
i:gi ∈ ℐ

w1 zi, gi; γ
∂ log w zi, gi; γ

∂γ + Dμ
m2

∑
j:g j ∈ 𝒜

w2 z j, g j; γ
∂ log w z j, g j; γ

∂γ

− 1
m1
B

m2
D

∑
i, j

 w1(i, γ)K(i; j) w2( j, γ)
∂ log w1(i; γ)

∂γ +
∂ log w2( j; γ)

∂γ .

(A9)

h1(i) and h2(j) in (A4) and (A6) have the form as h1(i) and h2( j) in (A7) and (A8) except that 

w1(z, g; γ) and w2(z, g; γ) are replaced by w(z, g; γ). To compute ξ(i) for the purpose of 

estimating variance, γ is plugged by its estimate γ , and μ is replaced by its sample analogue. 

Note, however, in the centering of test statistics in Sections 2 and 3, the mean of Ua, say ω, 

is taken under the null hypothesis. In the case that the weight is chosen as (5) standardizing 

Z to the distribution in the study population, then

∂ log w zi, gi; γ
∂γg

= pr(G = g Z = zi, γ)zi − I
gi = g

zi ⋅  (g = 2, …, 𝒢)

In the case that the weight is chosen to standardize to group 1 as defined in (6), then

∂ log w zi, gi; γ
∂γg

= − I
gi = g

zi .  (g = 2, …, 𝒢) .

APPENDIX A2:: PROOF THAT THE ADJUSTED U-STATISTIC HAS 

ASYMPTOTICALLY MEAN ω UNDER THE NULL HYPOTHESIS FOR 

STRATIFIED SAMPLING

First, consider a weighted mean
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1
n ∑

i = 1

n f yi, zi
pr G = gi Z = zi

=

∑
g = 1

𝒢 ng
n

1
ng

∑
i ∈ 𝒮g

f yi, zi
pr(G = g Z = zi)

,
(A10)

for a function f with E(|f (Y, Z)|) < ∞. Assume we have sampled by group (i.e., cases and 

controls for a retrospective study, exposed and unexposed people for a follow-up study). 

Then the null distribution of (Y, Z) may differ for different values of G. As a result, the 

weighted sum in (A10) may not converge to the same quantity if we change the proportion 

of persons from each group. In order to show that RHS (A10) is independent of how the 

groups are assembled, we need to consider the conditional distribution of (Y, Z) given G 
under the null hypothesis, which we write as

pr(Y , Z G) = pr(Y Z, G)pr(Z G) = pr(Y Z)pr(Z G),

where we have used the null hypothesis for the first factor in the middle equality. Now 

express

pr(Z |G) = ∫ pr(Z |G, S)dF(S |G) = ∫ pr(Z |S)dF(S |G),

where the last equality uses the balancing score property that Z ⊥ G|S which holds for both 

the stratification score5 when G is disease status, and the propensity score7 when G is 

exposure. Under the null then we have

pr(Y , Z |G) = pr(Y |Z)∫ pr(Z |S)dF(S |G) . (A11)

Note that only dependence on G in the RHS (A11) is through the distribution of S in each 

group. Thus, if we can weight the data so that the distribution function F(S|G) is the same in 

each group, we will find that pr(Y, Z|G) is the same in each group as well. Since S is a 

function of Z, a sufficient condition to ensure that pr(S|G) is the same across groups is that 

after weighting, the distribution of Z be the same in each group. Thus, we consider whether 

prw(Z|G), the effective distribution of Z in group G after weighting, is independent of group, 

where

prw(Z |G) ∝ pr(Z |G)
pr(G |Z) = pr(Z)

pr(G) , (A12)
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where pr(Z) and pr(G) are the distributions of Z and G in the study population, i.e., 

pr(G = g) =
ng
n  and

pr(Z) = ∑
g

pr(Z |G = g)pr(G = g) . (A13)

Thus, after normalizing, we see that inverse-probability-of-group-membership weighting 

gives the same distribution of covariates Z in each group. Therefore, as argued before, the 

distribution of (Y, Z) is the same in each group and hence the expected value is the same in 

each group.

We can now immediately extend this argument to kernels of order (1,1). First write

1
m1

1
m2

∑
i = 1

m1
∑

j = 1

m2 K yi, y j
pr1 G1 = gi Z = zi pr2 G2 = g j Z = z j

=

∑
g1 ∈ ℐ

∑
g2 ∈ 𝒜

mg1
m1

mg2
m2

1
mg1

1
mg2

∑
i ∈ 𝒮g1

∑
j ∈ 𝒮g2

K yi, y j
pr1 G1 = g1 Z = zi pr2 G2 = g2 Z = z j

where the subscript s on prs denotes the probability law that applies to sample s = 1,2 used to 

calculate the two-sample U-statistic. As before, we need to show that the conditional 

expected values of each term is the same under the null model. If we can do this, then the 

result is proved. However, since the data from the two observations are independent, the one-

sample results shown above apply immediately. Hence, the inverse-probability-of-group-

membership weights completely account for differences in the distribution of Y and Z across 

groups, and hence our adjusted U-statistic has asymptotic mean ω under the null. Further, 

the distribution of Z (and hence S) that characterizes the population that characterizes each 

group after weighting is given in (A13). If we additionally weight data from each population 

by pr(G = 1|Z = z), the argument leading to (A12) easily shows that prw(Z|G) ∝ pr(Z|G = 

1)pr(G = 1)/pr(G), indicating that weighting by pr(G = 1|Z = z)/pr(G = g|Z = z) corresponds 

to standardizing each group to have the same distribution of Z values found in group 1.
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FIGURE 1. 
Comparison of empirical p-values and theoretical (uniform) p-values for the Kruskal-Wallis 

type test (Panel A) and Jonckheere-Terpstra type test (Panel B). Brown (long-dashed curve) 

corresponds to standardization to the study population, blue (dotted curve) is standardization 

to the group 1, red (solid curve) is the parametric model, and black (dash-dotted curve) is the 

naive U-statistic that does not account for confounding.
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FIGURE 2. 
Power of the adjusted U-statistic for the Kruskal-Wallis type test (Panel A) and Jonckheere-

Terpstra type test (Panel B) when the parametric model is correctly specified, and the power 

of the adjusted U-statistic for the Kruskal-Wallis type test (Panel C) and Jonckheere-Terpstra 

type test (Panel D) when the parametric model is mis-specified. Solid curve is the Wald test 

for the parametric model. Long-dashed and dotted curves are adjusted U-statistics that 

standardize to the study population and group 1, respectively. The parameter α determines 

strength of the association. When α = 0 (no association) the power corresponds to the size of 

the test. All tests have 3 groups and 2 degrees of freedom.
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FIGURE 3. 
Expected vs. empirical p-values under null hypothesis using Kernel (12) and simulation data 

based on the COMPT study.
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TABLE 1

Empirical size from 1,000 simulated data sets for tests having a nominal size of 5%.

Analysis Standardization Size

Kruskal-Wallis test (U-statistic) None 0.137

Kruskal-Wallis test (Adjusted U-statistic) Study Population 0.053

Kruskal-Wallis test (Adjusted U-statistic) Group 1 0.047

Jonckheere-Terpstra test (U-statistic) None 0.155

Jonckheere-Terpstra test (Adjusted U-statistic) Study Population 0.054

Jonckheere-Terpstra test (Adjusted U-statistic) Group 1 0.057

Wald Test, Logistic Regression Not applicable 0.038
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TABLE 2

Size and power for simulated data sets for the genetic example.

βg Power

0.0 0.055

0.5 0.146

1.0 0.806

1.5 0.976

Stat Med. Author manuscript; available in PMC 2019 October 15.


	Summary
	INTRODUCTION
	SCORE-BASED ADJUSTMENT FOR CONFOUNDING AND ADJUSTED U-STATISTICS
	COMPARING MORE THAN TWO GROUPS
	SIMULATION RESULTS
	COMT HAPLOTYPES AND THE RISK OF SCHIZOPHRENIA IN AFRICAN AMERICANS
	DISCUSSION
	ASYMPTOTIC LINEAR REPRESENTATION OF UA.
	PROOF THAT THE ADJUSTED U-STATISTIC HAS ASYMPTOTICALLY MEAN ω UNDER THE NULL HYPOTHESIS FOR STRATIFIED SAMPLING
	References
	FIGURE 1
	FIGURE 2
	FIGURE 3
	TABLE 1
	TABLE 2

